品牌: 台达 DELTA
出品商家: 台达电子工业股份有限公司 (Delta Electronics Public Co.,Ltd)
型号: BFB1012UH
尺寸 :97*97*33mm边长9.7CM,厚度3.3CM
轴承:高精度双滚珠轴承
标准电压: 14.2V
电流:3.1******大暴力风量
工作寿命: 100000小时
风扇接口: 主板4针接口
额外功能 支持测速功能,支持PWM智能调速功能
特点 免维护双滚珠轴承,超长使用寿命,具备充足的散热风量和风压。
衍生推论
1.设行星1和行星2运行轨道的半径分别为R1和R2,当R1小于R2 时
则有
(1)行星1的线速度大于行星2的线速度;
(2)行星1的角速度大于行星2的角速度;
(3)行星1的加速度大于行星2的加速度 ;
(4)行星1的运行周期小于行星2的运行周期 ;
(5)在相同的时间内,行星1的运行路程大于行星2的运行路程 ;
(6)在相同的时间内,行星1扫过的角度大于行星2扫过的角度。[12]
2.行星在椭圆轨道运动时,极径(又称向径R)所扫过面积与经过的时间成正比,即掠面速度守恒 (dS/dt=R*da/dt=vR),亦即矢积守恒,又称动量矩(角动量mvR)守恒。
拓展形式
编辑数据:两倍掠面速度(J0),两倍椭圆面积(2πab),椭圆周期定律(T),极径(R),偏斜速度(VS),偏斜动量(mVS),速度方向与极径夹角(α),球面速度(VD),极径角速度(ωR), 弧高(RL) ,最小曲率半径(L0),速度系数(VC),天体引力常数(GM)
开普勒***定律掠面速度守恒公式:
J0 = (GML0)1/2 = L0(GM/ L0)1/2 = L0·Vc = a(1-e?)·VC = R·VS·sinα= VS·R·cosβ。
这是天体偏斜运动一般的矢积面速度守恒公式:极径*天体速度*两矢夹角正弦。
开普勒***定律几种表述:
表述一:两倍掠面速度(J0)= 两倍椭圆面积(2πab)/椭圆周期(T)
J0 = 2πab/T = 2(πab/n)/(T/n) = 2dA/dt
表述二:极径(R)* 天体速度(VS)*两矢夹角的正弦sin(α)的三个变量的积是不变量。
J0 = VS·R·sinα= VS·R·cosβ
表述三:天体速度(VS)*弧高(RL) 二个变量的积是不变量。
J0 = VS·(Rcosβ)= VS·RL
表述四:极径(R)*球面速度(VD)二个变量的积是不变量。
J0 =R·(VS cosβ)= R·VD = R·dD/dt
表述五:极径的平方(R?)*极径角速度(ωR)的积是不变量。
J0 = R·VD = R(RωR) = R?·ωR
表述六:最小曲率半径(L0)*速度系数(VC)。
J0 = R·VD=(L0/K0)·(VC K0)= L0·VC = L0(GM/ L0)1/2
表述七:天体引力常数(GM)与最小曲率半径(L0)积的平方根。
J0 = L0·VC = L0·(GM/ L0)1/2 = (GM·L0)1/2
特别的:
近日点的天体速度:Vm= J0/Rn =J0/a(1-e) = a(1-e)(1+e)·VC/a(1-e) = VC(1+e)
远日点的天体速度最小:Vn= J0/Rm =J0/a(1+e) = a(1-e)(1+e)·VC/a(1+e) = VC(1-e)。[13]
发展简史
编辑丹麦天文学家第谷·布拉赫死后,留下20多年的观测资料和一份精密星表。第谷提出了一种介于地心说和日心说之间的学说,在17世纪传入我国,并产生重大影响。在没有天文望远镜的情况下,第谷对天体方位进行了几十年的观测,凭借着惊人的毅力和耐心,积累了大量的***材料,开普勒的发现,就是通过归纳分析这些材料得出的。
开普勒认为通过对第谷的记录做仔细的数学分析可以确定哪个行星运动学说正确的:哥白尼日心说,古老的托勒密地心说,或者是第谷本人提出的第三种学说。但是经过多年仔细的计算和研究,他发现这三种学说与第谷的星表和观测数据都不符合。
约翰内斯·开普勒在无法用已有的行星运动理论解释第谷的观测资料的情
约翰内斯·开普勒况下,果断放弃了行星作匀速圆周运动的观念,并试图用别的几何图形来解释,经过四年的苦思冥想,也就是到了1609年他发现椭圆形完全适合这里的要求,能做出同样准确的解释,于是得出了“开普勒***定律”:火星沿椭圆轨道绕太阳运行,太阳处于两焦点之一的位置。
当开普勒继续研究时,“诡谲多端”的火星又将他骗了。原来,开普勒和前人都把行星运动当作等速来研究的。他按照这一方法苦苦计算了1年,却仍得不到结果。后来他发现,火星运行速度是不匀的,当它离太阳较近时运动得较快(近日点),离太阳远时运动得较慢(远日点)。
开普勒发现该问题后,经过精准刻苦的计算,他发现:在椭圆轨道上运行的行星速度不是常数,而是在相等时间内,行星与太阳的连线所扫过的面积相等。这就是行星运动***定律,又叫“面积定律”。[14]
这两条定律刊布在1609年出版的《新天文学》(又名《论火星的运动》)中,该书还指出两定律同样适用于其他行星和月球的运动。